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Abstract

In this study, a combination of genetic algorithm (GA) and neural networks (NN) is proposed to find the optimal weight

of structures subject to multiple natural frequency constraints. The optimization is carried out by an evolutionary

algorithm using discrete design variables. The evolutionary algorithm employed in this investigation is virtual sub-

population (VSP) method. To reduce the computational time of optimization process, the natural frequencies of structures

are evaluated using properly trained radial basis function (RBF) and wavelet radial basis function (WRBF) neural

networks. In the WRBF neural network, the activation function of hidden layer neurons is substituted with a type of

wavelet functions. In this new network, the position and dilation of the wavelet are fixed and only the weights are

optimized. The numerical results demonstrate the robustness and high performance of the suggested methods for structural

optimization with frequency constraints. It is found that the best results are obtained by VSP method using WRBF

network.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that the natural frequencies are fundamental parameters affecting the dynamic behaviour
of structures. Therefore, some limitations should be imposed on the natural frequency range to reduce the
domain of vibration and also prevention of the resonance phenomenon in dynamic response of structures.
Traditionally, the structure is iteratively analysed and designed to achieve this purpose. Therefore, a
preliminary set of cross-sectional properties is assumed and then, the structural analysis is performed. If the
demands of the design specifications are satisfied, the assumed sections are adopted. Otherwise, the cross-
sectional properties are modified and the structure is reanalysed. The structure thus designed by trail and error
is feasible but not necessarily optimal. Moreover, this trail-and-error procedure is very tedious. The process
can be easily and reliably implemented using optimization techniques. In recent years, much progress has been
made in optimal design of structures subject to stress, displacement and frequency constraints. They have
mostly employed the conventional and traditional methods for constraints approximation and optimization
[1–5]. These methods usually employ derivative calculations and may converge to a local optima.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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In this study, an efficient method is presented to find the optimal design of structures with multiple natural
frequency constraints utilizing an evolutionary algorithm. In the optimization process, the weight of the
structures is considered as the objective function. The design variables are cross-sectional areas of structural
elements and the design constraints are taken as the multiple natural frequencies. The standard genetic
algorithm (GA) is not efficient for optimization problems with large number of design variables. On the other
hand, the virtual sub-population (VSP) method offers a robust tool for this purpose [6]. In this method, all the
necessary mathematical models of the natural evolution are implemented on a small initial population to
access the optimal solution in an iterative manner. The stochastic nature of the evolutionary algorithms makes
the convergence of the process slow. Furthermore, evaluation of the natural frequencies of structures using
finite element method during optimization process can be computationally intensive with slow convergence.
Because of the above considerations, the natural frequencies of structures are evaluated in the present study
using properly trained radial basis function (RBF) and wavelet radial basis function (WRBF) neural
networks. Further, the activation function of hidden layer neurons of the WRBF is substituted with a specific
kind of wavelet functions. By the proposed method, evaluating the eigenvalues is very fast as compared to the
exact analytical methods; thus, employing the properly trained neural network in the process of optimization
makes the process very efficient.

This is the first study based on application of WRBF for identifying the natural frequencies of structural
systems. The other types of neural networks are employed by the researchers for the structural system
identification [7–12]. The specific contribution of the present study is to develop the proposed WRBF neural
network-based method for efficient evaluating the natural frequencies of the trial structural design. However,
the combination of the VSP and the WRBF for efficient structural optimization is the other important goal of
the study.

Two illustrative problems are solved to assess the robustness and efficiency of the suggested method for
structural optimization subject to frequency constraints.
2. Formulation of optimization problem

In sizing optimization problems, the aim is usually to minimize the weight of the structure, under some
constraints on stresses, displacements and frequencies. A discrete structural optimization problem can be
formulated in the following form:

Minimize f ðXÞ;

Subject to giðXÞp0; i ¼ 1; 2; . . . ;m;

X j 2 Rd ; j ¼ 1; 2; . . . ; n;

(1)

where f(X) represents objective function, g(X) is the behavioural constraint, m and n are the number of
constraints and design variables, respectively. A given set of discrete values is expressed by Rd and design
variables Xj can take values only from this set.

In this paper, objective function is taken as

f ðXÞ ¼
Xne
i¼1

riX ili (2)

and constraints are chosen to be natural frequencies of trial structures:

giðXÞ ¼
li

lall
� 1p0; i ¼ 1; 2; . . . ;m, (3)

where ri and li are weight of unit volume and length of ith element, respectively, ne is the number of the
structural elements, li and lall are the ith frequency and allowable frequency, respectively.
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Further, constraints are handled by using the concept of penalty functions, i.e.,

f ðXÞ ¼
f ðXÞ if X 2 ~D;

f ðXÞ þ f pðXÞ otherwise;

(
(4)

where fp(X) is penalty function. Further, ~D denotes the feasible search space.
A simple form of penalty function is employed as

f pðXÞ ¼ rp

Xm

i¼1

maxðgiðXÞ; 0Þ
� �2

, (5)

where rp is an adjusting coefficient.
As we employ an improved evolutionary algorithm for optimization, the main concepts of the algorithm are

briefly explained in Section 3.
3. Virtual sub-population evolutionary algorithm

In structural optimization problems, the objective function and the constraints are highly nonlinear
functions of the design variables. Hence, the computational effort for gradient calculations required by the
mathematical programming algorithms is usually large. In recent years, it was found that probabilistic search
algorithms are relatively computationally efficient even if greater number of optimization cycles is needed to
reach the optimal point [13]. These cycles are computationally less expensive in comparison with mathematical
programming algorithms, because they need no gradient evaluation. Furthermore, probabilistic methodol-
ogies were found to be more robust in finding the global optimum due to their random search, whereas
mathematical programming algorithms may be trapped into local optima.

In the field of evolutionary algorithms, GA has been widely used in the recent decade. However, the
stochastic nature of GA makes the convergence of the procedure slow. In particular, structural optimization
with a great number of degrees of freedom is very time consuming. In general, the standard GA is not
convenient to find the solution of problems with huge number of design variables. To overcome this
shortcoming of GA and reduce the computational rigour of the method, an improved GA is utilized in this
paper. In this modified GA, an initial population with a small number of individuals is selected. As a result the
population is much smaller than that in standard GA. Using the reduced initial population, all the necessary
operations of the standard GA are carried out and the optimal solution is achieved. As the size of the
population is not adequate, the method converges to a pre-mature solution. In each generation, individual
with a lower value of supplemental function satisfying the design constraints is saved. Then, the best solution
is chosen and repeatedly copied to create a new population. In the new population, the majority of the
individuals are the best-repeated solution of the previous results. The remaining members of the population
are randomly selected. Thereafter, the optimization process is repeated using standard GA with a reduced
population to achieve a new solution. The process of creating the reduced population with repeated
individuals in each iterations is continued until the method converges. These reduced populations are called
virtual sub-populations (VSPs) and the optimization process with VSPs is called VSP method. As
demonstrated in Ref. [6], the computational effort by VSP is less in comparison to the standard GA.

In order to make the optimal design process more efficient, neural networks are employed to identify the
necessary parameters of the trial structural design.
4. Wavelet RBF (WRBF) neural network

There are many types of neural networks,which are broadly utilized in civil and structural engineering
applications [14–19]. One of the most popular neural networks is RBF [20] neural network. RBFs take an
approach by viewing the design of neural networks as a curve-fitting problem by finding a best fit to the
training data in a multidimensional space [21]. RBF neural network is a two layers feed forward network in
which the hidden layer consists of RBF neurons with Gaussian activation functions [20]. RBF neural networks
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are widely used in the field of structural engineering due to their fast training, performance generality and
simplicity [22,23].

A new mapping neural network called wavelet neural network (WNN) or wavenet proposed as an
alternative to feed forward neural networks in order to approximate arbitrary nonlinear functions. A brief
description of wavelet theory is presented as follows.

4.1. Fundamentals of wavelet theory

Wavelet theory is the outcome of multidisciplinary endeavours that brought together mathematicians,
physicists, and engineers. This relationship creates a flow of ideas that goes well beyond the construction of
new bases or transforms. The term wavelet means a little wave. A function hAL2(R) (the set of all square
integrable or a finite energy function) is called a wavelet if it has zero average on (�N, +N) [24]:Z þ1

�1

hðtÞdt ¼ 0. (6)

This wavelet must have at least a minimum oscillation and a fast decay to zero in both the positive and
negative directions of its amplitude. These three properties are the Grossmann–Morlet admissibility
conditions of a function that is required for the wavelet transform. The wavelet transform is an operation,
which transforms a function by integrating it with modified versions of some kernel functions. The kernel
function is called the mother wavelet and the modified version is its daughter wavelet. A function hAL2(R) is
admissible if

ch ¼

Z þ1
�1

jHðoÞj2

joj
doo1, (7)

where H(o) is the Fourier transform of h(t). The constant ch is the admissibility constant of the function h(t).
For a given h(t), the condition choN holds only if H(0) ¼ 0. The wavelet transform of a function kAL2(R)
with respect to a given admissible mother wavelet h(t) is defined as

W kða; bÞ ¼

Z þ1
�1

kðtÞh�a;bðtÞdt, (8)

where * denotes the complex conjugate. However, most wavelets are real valued.
Sets of wavelets are employed for approximation of a signal and the goal is to find a set of daughter wavelets

constructed by dilated and translated original wavelets or mother wavelets that best represent the signal. The
daughter wavelets are generated from a single mother wavelet h(t) by dilation and translation as follows:

ha;bðtÞ ¼
1ffiffiffi
a
p h

t� b

a

� �
, (9)

where a40 is the dilation factor and b the translation factor. The constant term of 1=
ffiffiffi
a
p

is for energy
normalization, which keeps the energy of the daughter wavelet equal to the energy of the original mother
wavelet [24].

The combination of the wavelet transforms theory with the basic concept of RBF neural networks leads to a
new network.

4.2. Designing of WRBF

The WNN use wavelets as activation functions of hidden layer neurons. Neural networks construction
methods can be developed using theoretical features of the wavelet transform. These methods help to
determine the neural networks parameters during the training process. In wavelet networks, both the position
and dilation of the wavelets are optimized besides the weights.

There are different approaches to construct wavelet networks. In one approach, the position and dilation of
the wavelets taken to be fixed and only the weights of network are optimized [21]. The key issues in design of
wavelet networks are determination of the network structure and the learning algorithm that can be effectively
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Fig. 1. Activation function of the RBF neurons.
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Fig. 2. Cosine-Gaussian Morlet wavelet with o0 ¼ 4.
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used for training of the network. In this study, the above-mentioned approach is employed to design a WNN
using RBF network topology and its training method.

In standard RBF neural networks, activation function of hidden layer neurons is a Gaussian kernel function
shown in Fig. 1. In this study, in order to increase the performance generality of RBF neural network, the
RBF neurons activation function is substituted with the Morlet’s basic wavelet function.

The Morlet’s basic wavelet function is a multiplication of the Fourier basis with a Gaussian window [25]:

hðtÞ ¼ expðjo0tÞ expð�0:5t2Þ, (10)

hðtÞ ¼ ½cosðo0tÞ þ j sinðo0tÞ� expð�0:5t2Þ, (11)

where the real part is a cosine-Gaussian and the imaginary part is a sine-Gaussian function. The cosine-
Gaussian wavelet is a real even function. Fig. 2 provides the plot of the cosine-Gaussian Morlet wavelet, with
o0 ¼ 4, which does not satisfy the wavelet admissibility condition, because

Hð0Þ ¼
ffiffiffiffiffiffi
2p
p

expð�0:5o2
0Þa0, (12)

which leads to ch ¼+N. However, if o0 is sufficiently large, say o0 ¼ 4, H(0) becomes very close to zero and
practically is considered to be zero in numerical computations.
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Fig. 3. Typical topology of WRBF networks.
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In this study, the cosine-Gaussian Morlet wavelet with o0 ¼ 4 is employed as the activation function of
RBF neurons. The resulted WRBF is trained by the same method employed for training the RBF network.
With this training method, the location of each WRBF neuron is determined exactly in the input space.
Therefore, the value of translation factor of hidden layer wavelet activation functions should be set to zero
(b ¼ 0). A simple procedure is used for determining the value of dilation factor of WRBF neurons. The
WRBF network is trained using different values of dilation factors and the performance generality of the
network is evaluated. The value that results in the highest performance generality is selected as optimal
dilation factor of WRBF neurons. Because the training process of WRBF is implemented quickly,
determination of optimal dilation factor is accomplished spending trivial effort. In this study, the best
performance generality is found with a ¼ 4.5 and consequently, WRBF neurons activation function is cosine-
Gaussian Morlet daughter wavelet as follows:

fiðZÞ ¼
1ffiffiffiffiffiffiffi
4:5
p cosð4ðZ=4:5ÞÞ expð�0:5ðZ=4:5Þ2Þ, (13)

fiðZÞ ¼ 0:4714 cosð0:889ZÞ expð�0:0247Z2Þ, (14)

where fi( � ) and Z are WRBF neurons activation function and input vector, respectively.
Typical topology of WRBF networks is shown in Fig. 3.
4.3. Main steps for training and testing of WRBF

The important steps in training and testing of WRBF are summarized as follows:
(a)
 A data set is generated and divided into the training and testing data sets.

(b)
 The simple Gaussian activation function of RBF neurons is substituted with cosine-Gaussian Morlet

wavelet function with o0 ¼ 4 and b ¼ 0.

(c)
 A random value is assigned to dilation factor of WRBF neurons.

(d)
 The WRBF network is trained using training data set.

(e)
 Performance generality of WRBF network is checked using testing data set.

(f)
 If performance generality is satisfactory, the training process is terminated; otherwise step (g) is

performed.

(g)
 Another value is assigned to dilation factor of WRBF neurons.

(h)
 Steps (d)–(h) are repeated until the proper solution is met.
Numerical results indicate that the proposed WNN with RBF networks structure and the new hidden layer
activation function is much better in comparison to the standard RBF in terms of performance generality.
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5. Main steps of structural optimization

The main steps for the structural optimization with multiple frequency constraints by VSP method using the
RBF and WRBF networks are summarized as follows:
(a)
Tab

Spec

Pop

Cro

Cro

Mut

Max

Tab

Spec

Pop

Cro

Cro

Mut

Max
Selecting some parent vectors from the design variables space.

(b)
 Evaluating the natural frequencies of the structure employing trained RBF and WRBF networks.

(c)
 Evaluating the objective function.

(d)
 Checking the constraints for feasibility of parent vectors.

(e)
 Generating offspring vectors using selection, crossover and mutation operators.

(f)
 Employing the trained RBF and WRBF networks for predicting the natural frequencies of the offspring

population.

(g)
 Evaluating the objective function.

(h)
 Checking the constraints, if satisfied continue, else change the vector and go to step (f).

(i)
 Checking convergence criteria; if satisfied stop, else go to step (e).
le 1

ifications of GA method

ulation size 50

ssover method One, two, and three points crossover

ssover rate 0.9

ation rate 0.001

imum generation 300

le 2

ifications of VSP method

ulation size 30

ssover method One, two, and three points crossover

ssover rate 0.9

ation rate 0.001

imum generation in each run 30

Fig. 4. 10-Bar aluminium truss.
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Table 3

Available sections for Example 1

No. Area (cm2)

1 4.419

2 9.910

3 11.452

4 13.897

5 18.239

6 20.084

7 24.110

8 38.619

Table 4

Groups of the 10-bar steel truss elements

Group Elements

1 1; 3

2 2

3 4

4 5; 6

5 7

6 8

7 9

8 10

Table 5

Information of training and testing of the networks for Example 1

Network Training time (s) Maximum errors (%) Mean errors (%)

F1 F2 F3 F1 F2 F3

RBF 0.203 25.988 69.772 39.719 3.125 6.432 5.031

WRBF 0.205 13.815 22.351 23.696 2.091 3.286 2.980
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Fig. 5. Errors of the first approximate frequency. , WRBF, , RBF.
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(j)
 Selecting the majority parent vectors from the previous solution and some random design variables as a
VSP.
(k)
 Repeating steps (c)–(k) until the proper solution is met.
As the size of populations in VSP method is small, the procedure converges rapidly. It can be observed that
the modal analysis of the structures is not necessary during the optimization process.

6. Numerical results

In this study, two structures are selected as numerical examples for optimization. These structures are
(1)
 10-bar aluminium truss and

(2)
 200-bar steel double layer grid.
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Example 1 is taken from Ref. [1] for comparing the efficiency of the proposed and traditional methods. The
other example is chosen arbitrarily. The optimization is carried out by the following methods:
(a)
Tab

Opt

Vari

1

2

3

4

5

6

7

8

Wei

Gen

Tim

Tab

Com

Freq

1

2

3

GA using exact analysis;

(b)
 GA using approximate analysis by RBF network;

(c)
 GA using approximate analysis by WRBF network;

(d)
 VSP using exact analysis;

(e)
 VSP using approximate analysis by RBF network; and

(f)
 VSP using approximate analysis by WRBF network.
The computational time is measured in terms CPU time required by a PC Pentium IV 3000MHz. Also, the
errors between exact and approximate frequencies are calculated using the following equation:

error ¼
jlap � lexj

lex
� 100, (15)

where lap and lex represent the approximate and exact frequencies, respectively.
The specification of parameters for the GA and VSP methods are presented in Tables 1 and 2,

respectively.
In this study, the input space consists of cross-sectional areas of the structural elements, while the

corresponding natural frequencies of them are considered as the target space components. Therefore, in all the
le 6

imal designs of the 10-bar truss obtained by the various methods

able no. Optimal design (cm2)

GA VSP

Exact RBF WRBF Exact RBF WRBF

38.619 38.619 38.619 38.619 38.619 38.619

11.452 24.110 18.239 18.239 18.239 13.897

24.110 13.897 13.897 9.910 9.910 20.084

4.419 4.419 4.419 4.419 4.419 4.419

20.084 18.239 20.084 24.110 20.084 20.084

24.110 24.110 20.084 20.084 24.110 20.084

13.897 11.452 9.910 11.452 18.239 11.452

11.452 13.897 20.084 13.897 9.910 13.897

ght (kg) 557.03 556.62 550.58 538.27 548.29 538.61

erations 98 86 93 72 60 56

e (s) 15.1 14.2 15.0 11.6 7.2 6.5

le 7

parison of approximate frequencies of optimal designs in terms of errors (%)

uency no. GA VSP

RBF WRBF RBF WRBF

0.19 0.32 0.85 0.72

2.69 0.66 2.66 1.19

4.02 1.60 0.90 0.79
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numerical examples, the number of the input vector components is equal to the number of the element groups,
while the number of output vector components is equal to the number of the selected frequencies. MATLAB
[26] is utilized for training and testing the neural networks while Lanczos [27] method is used for eigenvalue
extraction.
Fig. 8. Double layer grid: (a) top layer, (b) bottom layer, and (c) diagonal layer.
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6.1. Example 1: 10-bar aluminium truss

The 10-bar aluminium truss, shown in Fig. 4, has been considered as the first illustrative example for
optimization in this study. Cross-sectional areas of the elements, which are considered as the design variables,
are selected from the available sections in Table 3. Modulus of elasticity and density are taken equal to
6.86� 1010N/m2 and 2770 kg/m3, respectively.

Mass of 454 kg is lumped at each free node. The multiple natural frequency constraints are considered as
l1X7Hz, l2X15Hz, and l3X20Hz.

For sake of simplicity and practicality, the truss elements are divided into 8 groups based on the cross-
sections, as shown in Table 4.
6.1.1. Neural networks training and testing

The training and testing parameters of the neural networks used in this example are summarized in Table 5.
The networks errors due to frequencies approximation in the testing mode are presented in Figs. 5–7. The
number of samples in training and testing modes is 250 and 150, respectively.
Table 8

Available sections for Example 2

No. Area (cm2)

1 1.213

2 2.540

3 3.733

4 4.534

5 5.229

6 6.669

7 10.670

8 11.810

Table 9

Groups of the double layer grid elements

Group Elements

1 1–24; 61–64

2 65–92

3 93–100

4 25–48

5 49–60

6 101–148

7 149–196

8 197–200

Table 10

Information of training and testing of the networks for Example 2

Network Training time (s) Maximum errors (%) Mean errors (%)

F1 F3 F5 F7 F1 F3 F5 F7

RBF 0.359 48.44 63.13 37.08 26.57 6.13 5.76 6.20 4.83

WRBF 0.365 7.61 8.29 12.76 7.99 1.59 1.57 2.31 1.89
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The optimal solutions obtained by various methods employed are shown in Table 6. It can be noted from
the table that the solutions found by the VSP method are more economical and the best solution is attained by
the VSP method using WRBF network. The table also indicates that the number of generations,
computational time and optimal weights are less for VSP method using WRBF network.

Table 7 presents the accuracy of approximate frequencies predicted by RBF and WRBF networks for
optimum structures. As shown in the table, accuracy of the approximate frequencies computed by WRBF
network is higher than RBF network. Based on the comparison with the results presented in Ref. [1], the
combination of VSP method and neural networks provides a more reliable and powerful tool for structural
optimization subject to multiple frequency constraints.

6.2. Example 2: 200-bar double layer grid

A 200-bar and 10m� 10m double layer grid with a height of 0.5m is considered as the second example. The
top, bottom and diagonal layers of the double layer grid are shown in Fig. 8. The structure is supported on the
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corner nodes of the bottom layer. Cross-sectional areas of the elements are selected from the available sections
in Table 8.

Owing to the practical considerations, the structural elements are grouped into 8 different types as shown in
Table 9. Modulus of elasticity and density are taken equal to 2.1� 1011N/m2 and 7850 kg/m3, respectively. A
mass of 19,620 kg is lumped at each free node of the top layer. To group the elements and also to select the
frequency constraints, the double layer grid structure is optimized subject to gravity loads and with the natural
frequencies considered as constraints in the example: l1X3.5Hz, l3X5Hz, l5X7Hz, and l7X9Hz.
6.2.1. Neural networks training and testing

The training and testing parameters of the neural networks used in the example are presented in Table 10.
Also, the networks errors due to approximate frequencies in the testing mode are displayed in Figs. 9–12. The
number of samples in training and testing modes is 400 and 200, respectively.
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Table 11

Optimal designs of the double layer grid obtained by the various methods

Variable no. Optimal design (cm2)

GA VSP

Exact RBF WRBF Exact RBF WRBF

1 5.229 3.733 3.733 3.733 3.733 4.534

2 6.669 6.669 6.669 5.229 6.669 6.669

3 10.670 10.670 6.669 10.670 6.669 5.229

4 6.669 6.669 10.670 10.670 6.669 6.669

5 6.669 5.229 5.229 6.669 5.229 6.669

6 2.540 4.534 3.733 2.540 4.534 3.733

7 6.669 5.229 4.534 4.534 5.229 5.229

8 6.669 10.670 4.534 4.534 10.670 6.669

Weight (kg) 1585.9 1543.1 1530.2 1476.9 1492.9 1483.2

Generations 156 187 190 196 140 112

Time (s) 582.0 22.5 23.0 315.0 8.2 6.5

Table 12

Comparison of approximate frequencies of optimal designs in terms of errors (%)

Frequency no. GA VSP

RBF WRBF RBF WRBF

1 2.82 2.25 2.86 1.68

3 3.06 2.54 2.49 1.97

5 1.46 1.38 2.04 0.88

7 3.42 2.55 2.81 1.92

S. Gholizadeh et al. / Journal of Sound and Vibration 312 (2008) 316–331330
The optimal solutions obtained by the various methods are shown in Table 11. As observed from the table
the solutions, which are found by VSP method are more economical and the best solution is achieved by VSP
method using WRBF network.

Table 12 presents the accuracy of approximate frequencies predicted by RBF and WRBF networks for
optimum structures. It can be observed that performance generality of WRBF network is higher than that of
RBF network.
7. Conclusions

In this study, an efficient optimization procedure has been developed for the optimal design of structures
with frequency constraints using discrete design variables. The proposed procedure utilizes a combination of
the evolutionary algorithm, neural networks and wavelet theory. The employed evolutionary algorithm is VSP
method. The VSP method alleviates the shortcomings of the standard GA such as convergence to a local
optima and excessive computational effort for structures with a large number of degrees of freedom. The
results demonstrate that VSP method results in a better solution and a greater efficiency in comparison
the standard GA. To reduce the overall time of optimization process, the natural frequencies of structures are
predicted using properly trained RBF neural networks. Further, in order to improve performance generality
of RBF networks the activation function of hidden layer neurons is substituted with cosine-Gaussian Morlet
daughter wavelet function. The resulted network is called WRBF network. Numerical results of testing the
networks indicate that performance generality of WRBF network is higher in comparison to RBF network.
Finally, the optimization is implemented by GA and VSP methods using RBF and WRBF networks and
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numerical results demonstrate that the combination of VSP and WRBF provides a more robust tool for
optimization of structures with constrained frequencies.
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